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Abstract 

 
Sequential Pattern Mining is a technique used to discover 

frequent patterns in a sequence database. An UpDown Directed 

Acyclic Graph (UDDAG) is a data structure used for sequential 

pattern mining which derives patterns based on the bidirectional 

pattern growth approach. In existing, to derive a pattern, a 

database projection method was used. This method projects the 

database according to their prefix and suffix recursively and 

makes the database much smaller to further levels. UDDAG 

derives length-(k+1) patterns based on the projected databases of 

length-k patterns recursively. However this method takes time to 

build the database and to find the support count. To overcome 

the problem, an approach to represent the item sets in database 

as vertical bitmap representation is proposed. It efficiently stores 

the database as vertical bitmaps, where each bitmap represents 

an item set in the database. Efficiently counting the support of 

the item set is one of the main advantages of the vertical bitmap 

representation of the data. 

Keywords: Sequential Pattern Mining, Database Projection, 

Vertical Bitmaps, UDDAG. 

1. Introduction 

Data Mining is the process which helps to extracting 

interesting and hidden information or patterns from large 

information repositories such as relational database, data 

warehouses, XML repository, etc. Sequential Pattern 

Mining is an important problem in data mining. 

 

Sequential Pattern Mining is the process of extracting 

certain sequential patterns from the sequence database 

whose support exceeds a predefined minimal support 

threshold. A minimum support is defined by users 

because the number of sequences can be very large, and 

users have different interests and requirements to get the 

most interesting sequential patterns. By using the 

minimum support we can prune out those sequential 

patterns, consequently making the mining process more 

efficient. Sequential pattern can be widely used in 

different areas. 

 

For example, from a sequence database, we can find the 

frequent sequential purchasing patterns, for example if a 

customer buys the computer typically the same customer 

 

 

will buy the pen drive within few weeks. 2. Basic 

Concepts 

Let I = { x1,…,xn } be a set of items. A non-empty subset 

of items is referred an item set. The number of items in an 

item set is called the length of an item set. A list of item 

sets, α = < X1,…,Xl > is called sequence. An item set Xi 

(1 ≤ i ≤ l) in a sequence is called a transaction. The 

number of transactions in a sequence is called the length 

of the sequence. A sequence α = < X1,…,Xn > is called a 

subsequence of another sequence β = < Y1,…,Ym > where 

(n ≤ m), and β a super-sequence of α, if there exist 

integers 1 ≤ i1 <…< in ≤ m such that X1Yi1,…, XnYin . A 

sequence database is a set of 2-tuples (sid, α), where sid is 

a sequence-id and α is a sequence. 

2.1 Sequential Pattern 

Sequential Pattern is a sequence of item sets that 

frequently occurs in a specific order, all items in the same 

item sets are supposed to have the same transaction time. 

Consider the database D is sorted, with customer-id as 

major key and transaction-time as minor key. Usually all 

the transactions of a customer are together viewed as a 

sequence, usually called customer-sequence as shown in 

Table 1. 

Table 1: Customer sequence database 

Seq.id Sequence 

s1 <(1,2)(4)(3,5)(7)> 

s2 <(1,2,3)(3)(5,7)> 

s3 <(6)(5,6)(4,7)> 

s4 <(4,5)(5,6)(1)(3,5)> 

s5 <(4)(5)(2,3)(1,6)> 

2.2 Support 

A customer supports a sequence s if s is contained in their 

corresponding  sequences  in  the  sequence  database;  the 
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support of sequence s is defined as the fraction of 

customers who support this sequence which is given in 

Eq. (1). 

 

 

2.3 Problem Definition 

Given (i) a set of sequential records (called sequences) 

representing a sequence database D; (ii) a minimum 

support threshold called min_sup; and (iii) a set of k 

unique items or events I = { i1,i2,…,ik }. The problem of 

mining sequential patterns is to find the set of all frequent 

subsequences S of items I in D which satisfies the given 

min_sup. 

3. Related Work 

The AprioriAll algorithm described by Agrawal and 

Srikant [1] that states that “All nonempty subsets of a 

frequent item set must also be frequent”. The main 

drawback of AprioriAll is that too many passes over the 

database is required and too many candidates are 

generated. 

 

The GSP algorithm described by Agrawal and Srikant [2] 

is an improvement over AprioriAll. To reduce candidates, 

GSP only creates a new length-k candidate when there are 

two frequent length-(k-1) sequences with the prefix of one 

equal to the suffix of the other. In AprioriAll it is easy to 

get the support counts of all those candidate sequences but 

in GSP it is difficult to get the support counts of candidate 

sequences. 

 

The SPIRIT algorithm uses regular expressions as 

constraint [4]. It allows the users to specify the regular 

expression constraint on the mined patterns. This method 

avoids wastage of computing effort for mining patterns 

that users are not interested in. Although it needs a 

systematic method to push various constraints into the 

process. 

 

The PrefixSpan(Prefix-projected Sequential pattern 

mining) algorithm presented by Jian Pei [7] representing 

the pattern-growth methodology. PrefixSpan mainly 

employs the method of database projection and also in 

PrefixSpan there is no need for candidate generation only 

recursively project the database according to their prefix. 

Although the PrefixSpan algorithm successfully 

discovered patterns, the cost of memory space might be 

high due to the creation and processing of huge number of 

projected sub-databases. 

 

SPADE (Sequential Pattern Discovery using Equivalence 

classes) algorithm presented by M.J.Jaki [9] is proposed 

to find frequent sequences using efficient lattice search 

techniques and simple joins. However in SPADE, 

candidates are generated and tested on the fly to avoid 

storing candidates, which costs a lot to merge the id-lists 

of frequent sequences for a large number of candidates. 

 

Another approach called MEMory Indexing for 

Sequential Pattern mining (MEMISP) was introduced [6]. 

MEMISP uses a recursive searching and indexing strategy 

to generate all the sequential patterns from the data 

sequences stored in memory. MEMISP is more efficient 

than GSP and PrefixSpan but slower when pseudo 

projection technique is used in PrefixSpan. 

 

By combining SPAM, a new algorithm called LAst 

Position INduction Sequential PAttern Mining 

(abbreviated as LAPIN-SPAM) has been proposed [10]. 

When judging whether a sequence is a pattern or not, the 

previous techniques use S-Matrix by scanning projected 

database (PrefixSpan) or count the number by joining 

(SPADE) or ANDing with the candidate item (SPAM). In 

contrast, LAPIN-SPAM can easily implement this process 

based on the following fact - if an item’s last position is 

smaller than the current prefix position, the item cannot 

appear behind the current prefix in the same customer 

sequence. LAPIN-SPAM could largely reduce the search 

space during mining process. But it consumes much more 

memory than PrefixSpan. 

 

Although presenting the complete set of sequential 

patterns may make the mining result hard to understand 

and hard to use. To overcome this problem Jian Pei, 

Jiawei Han and Wei Wang [8] have presented the pushing 

of various constraints deep into sequential pattern mining 

using pattern growth methods. Constraint-based mining 

may overcome the difficulties of effectiveness and 

efficiency since constraints usually represent user’s 

interest, which limits the patterns to be found. 

4. Existing System 

An UpDown Directed Acyclic Graph (UDDAG) is a data 

structure used for sequential pattern mining which derive 

patterns based on the bidirectional pattern growth 

approach along both ends of detected patterns recursively 

[3]. At each level of recursion, the length of detected 

patterns grows bidirectionally along its prefix and suffix 

of detected patterns. To derive a pattern, a method called 

database projection was used. This method makes the 

database much smaller to further levels and consequently 

make the algorithm more speedy, also there is no need for 

candidates generation only recursively project the 

database according to their prefix and suffix. UDDAG 

derives length-(k+1) patterns based on the projected 

databases of length-k patterns recursively. 

(1) 
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4.1 UDDAG 

UDDAG efficiently finds and represents the relationship 

between patterns. It represents patterns as vertexes and 

relationship of patterns as directed edges. Each vertex 

represents a pattern with occurrence information, i.e., the 

sequence-ids of tuples containing the pattern. By 

representing the relationship of patterns from prefix with 

a DAG (Up DAG) and the relationship of patterns from 

suffix with another DAG (Down DAG), we can decrease 

the number of candidates by using these DAGs. 

5. Proposed Work 

In existing, at each level of pattern mining, a prefix and 

suffix projected database needs to be formed, which 

consumes more memory if the number of data sequences 

increase. Also it takes more time to build the database and 

to find the support count of the items. 

 

To overcome the problem of time, a vertical bitmap 

representation is proposed. The basic idea is that it 

completely eliminates the need of database projection and 

finds the patterns from the bitmap representation. The 

design of the sequential pattern mining is shown in Fig. 1. 

 

 

Fig. 1  Design of sequential pattern mining 

 

   Algorithm 1: Sequential Pattern Mining 

1 Input: D, sequence database 

2 min_sup, minimum support 

3 Output: P , set of patterns in D 

4 Procedure: pattern(D,min_sup) 

5 begin 

6 P = Φ 

7 FISet = fpgrowth(D,min_sup) 

8 D' = transform(D,FISet) 

9 B = bitmap(D', id) 

10 foreach FI x in FISet do  

11 vertex root = new vertex(x)  

12 prefixpattern(B,root,x,min_sup,tid1,tid2)  

13 suffixpattern(B,root,x,min_sup,tid2,tid1)  

14 UDDAG(root)  

15    P =P ⋃ root.getAllPatterns()  

16 end  

17  end  

 

Algorithm 1 first finds the frequent item sets. Then 

transform the database and presents the bitmap 

representation for the transformed database. For each item 

set, a new vertex is created and finds the frequent item 

sets in the prefix and the suffix of the item set and then 

finds long subsequences by combining prefix and suffix 

item sets. 

5.1 Frequent Item Sets 

It refers to the item set whose number of occurrences 

satisfies the minimum support. To detect the frequent item 

sets, FP-growth algorithm [5] is used. It comprises of two 

steps: 

 

1)  First to construct the FP-tree that represents the data 

set in the form of a tree. Each transaction is read and then 

mapped onto a path in the FP-tree. This is done until all 

transactions have been read.  

 

2)  Secondly FP-Growth extracts frequent item sets 

from the FP-tree in a bottom-up fashion from the leaves 

towards the root. Using a divide and conquer approach, 

find the frequent item sets ending in a particular suffix.  

 

For e.g., for the database in Table 1, the FIs are: (1), (2), 

(3), (4), (5), (6), (7), (1,2), (2,3), (3,5), (5,6). 

5.2 Transformation 

Based on frequent item sets, we transform each sequence 

in a database into an alternative representation. It works 

as follows: 

 

Database Transformation: First, we assign a unique id 

to each Frequent Item set (FI). We then replace each item  

set in each sequence with the ids of all the FIs contained 

in the item set. For e.g., (1)-1, (1,2)-2, (2)-3, (2,3)-4, (3)-

5, (3,5)-6, (4)-7,(5)-8, (5,6)-9, (6)-10, (7)-11. We then 

replace the database as shown in Table 2. 

Table 2: Transformed database 

Seq.id Sequence 

s1 <(1,2,3)(7)(5,6,8)(11)> 

s2 <(1,2,3,4,5)(5)(8,11)> 

s3 <(10)(8,9,10)(7,11)> 
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s4 <(7,8)(8,9,10)(1)(5,6,8)> 

s5 <(7)(8)(3,4,5)(1,10)> 

 

Vertical Bitmap Representation: It stores the 

transformed database in vertical bitmaps, where each 

bitmap represents an item set in the database and a bit in 

each bitmap represents whether or not a given customer 

has the corresponding item set. If item set i appear in 

transaction j, then the bit corresponding to transaction j of 

the bitmap for item set i is set to one; otherwise, the bit is 

set to zero. For e.g., the vertical bitmap representation for 

the transformed database(shown in Table 2) is shown in 

Fig. 2. 

 

 

Fig. 2  Bitmap representation   

 

     Algorithm 2: Patterns in the Prefix 

1 Input: B, the bitmap representation of D'
 

2             root, root vertex 

3             x, frequent item set 

4             min_sup, minimum support 

5             tid1, start transaction id 

6             tid2, end transaction id 

7 Output: PFISet, set of prefix frequent item set for x 

8 Procedure: prefixpattern(B,root,x,min_sup,tid1,tid2) 

9 begin 
10 foreach sequence s in B do  

11 tid1s=upsearch(x,s,tid1s,tid2s)  

12 PISets=pprune(B,x,s,tid1s,tid2s)  

13 end 

14 PFISet=count(PISet,min_sup)  

15 foreach FI y in PFISet do  

16 vertex ver = new vertex(y,root)  

17 root.addUpChild(ver)  

18 prefixpattern(B,ver,y,min_sup,tid1,tid2)  

19 suffixpattern(B,ver,y,min_sup,tid2,tid1)  

20 UDDAG(ver)  

21 end  

22 end  

5.3 Problem Partitioning 

Let { x1,x2,…,xt } be the frequent item sets in a database 

D, where x1 < x2 <…< xt. D can be divided into t disjoint 

subsets. The ith subset (denoted by Pxi ,1 < i < t) is the set 

of patterns that contains xi and FIs smaller than xi. 

 

P is the complete set of patterns in D. Px is the set of 

patterns with respect to item set x. To detect Px, we first 

detect patterns in prefix of x and suffix of x and combine 

them to derive Px. This is a recursive process, we perform 

the same action until reaching the base case, where there 

is no frequent item set is found. 

Algorithm 2 and Algorithm 3 are used to find the frequent 

item sets in the prefix and the suffix of each item set. 

 

 

     Algorithm 3: Patterns in the Suffix 

1 Input: B, the bitmap representation of D
' 

2             root, root vertex 

3             x, frequent item set 

4             min_sup, minimum support 

5             tid2, start transaction id 

6             tid1, end transaction id 

7 Output: SFISet, set of suffix frequent item set for x 

8 Procedure: suffixpattern(B,root,x,min_sup,tid2,tid1) 

9 begin 
10 foreach sequence s in B do  

11 tid2s=downsearch(x,s,tid2s,tid1s)  

12 SISets=sprune(B,x,s,tid2s,tid1s) 

13 end  

14 SFISet=count(SISet,min_sup)  

15 foreach FI y in SFISet do  

16 vertex ver=new vertex(y,root)  

17 root.addDownChild(ver)  

18 prefixpattern(B,ver,y,min_sup,tid1,tid2)  

19 suffixpattern(B,ver,y,min_sup,tid2,tid1)  

20 UDDAG(ver)  

21 end  

22 end  

 

Searching:  First we need to perform Bottom Up Search. 

It scan each customer transactions individually along x 

from the bottom to find the first existence of item set x in 

the transaction and return their corresponding tid. For the 

Fig. 2, consider item set 8, in sequence 1-first exists in the 

transaction 3, sequence 2-3, sequence 3-2, sequence 4-4, 

sequence 5-2. Similarly we need to perform Top Down 

Search. It scan each customer transactions individually 

along x from the top to find the first existence of item set 

x in the transaction and return their corresponding tid. For 

the Fig. 2, consider item set 8, in sequence 1-first exists in 

the transaction 3, sequence 2-3, sequence 3-2, sequence 4-

1, sequence 5-2.  
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Pruning:  Algorithm 4 describes the pruning function for 

prefix item set. Once searching has been completed, 

pruning is done for two cases: 

 

Case 1: With the result of bottom up search, at each 

sequence perform bitwise OR operation for the item sets 

before the tid to find the item sets that the each customer 

bought in their purchase before x then count the support 

of each item set (total no.of customers who purchased the 

item set before x) from the output of OR operation. Those 

item sets satisfies the threshold (min_sup) are considered  

as prefix FIs. Then the FIs are projected in DAG. 

 

Case 2: With the result of top down search, at each 

sequence perform bitwise OR operation for the item sets 

after the tid to find the item sets that the each customer 

bought in their purchase after x then count the support of 

each item set (total no.of customers who purchased the 

item set after x) from the output of OR operation. Those 

item sets satisfies the threshold (min_sup) are considered 

as suffix FIs. Then the FIs are projected in DAG. 

 

For e.g., item set 8 have 1, 2, 3, 7 as prefix FIs and 1, 5 as 

suffix FIs. 

 

 

     Algorithm 4: Pruning of Prefix Frequent Item Set 

1 Input: B, the bitmap representation of D
' 

2             root, root vertex 

3             s, sequence  

4             stid, start transaction id 

5             etid, end transaction id 

6 Output: ISet, set of item set 

7 Procedure: pprune(B,x,s,stid,etid) 

8 begin 

 9     while x!=0 do 

10         ISets[x]=0 

11        foreach transaction tidx from stid to etid in 

            sequence s do  

12            if Bs,tidx ==1 then   

13                  ISets[x]=1 

14                  break 

15            end 

16            else 

17                  continue 

18            end 

19        end 

20        decrement x 

21    end 

22    return ISets  

23 end    

5.4 Pattern Discovery 

UDDAG data structure is used represents the relationship 

between patterns. To represent the relationship of patterns 

from prefix with a DAG, Up DAG is used and the 

relationship of patterns from suffix with another DAG, 

Down DAG is used. For e.g., item set 8 have 1, 2, 3, 7 as 

prefix FIs which are projected using Up DAG and 1, 5 as 

suffix FIs which are projected using Down DAG. Fig. 3 

shows the Up DAGs for the prefix of item set 8 and Fig. 4 

shows the Down DAGs for the suffix of item set 8. 

 

 

Fig. 3  Up DAGs for item set 8 

 

 

 

 
Fig. 4  Down DAGs for item set 8 

After the Up and Down DAGs of x are represented then 
should detect Px by evaluating each candidate vertex pair. 
It is done by combining each up vertex with each down 
vertex and finds the intersection of the occurrence sets. If 
the corresponding support satisfies the min sup then it is 
considered as a pattern. 
 

For e.g., we detect P8 based on the Up and Down DAGs 

of 8 (shown in Fig. 3 and 4). First, we detect the VDVSs 

for length-1 pattern in prefix of item set 8, i.e., up 

vertexes 1, 2, 3, and 7. For vertex 1, first, we check its 

combination with down vertex 1, the intersection of the 

occurrence sets is <4>. Thus, the corresponding support is 

at most 1, which is not a valid combination. Similarly, up 

vertex 1 and down vertex 5 are also invalid combination. 

Therefore, VDVS1 = Φ; VDVS2 = Φ; VDVS3 = Φ; VDVS7 

= {<1>,<5>} 

 

Since no length-2 pattern exists in prefix, the detection 

stops. UDDAG for item set 8 is shown in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.   UDDAG for item set 8 

Hence the patterns are  
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P11 = { <11>,<1 11>,<2 11>,<3 11>,<5 11>, 

<1 5 11>,<2 5 11>,<3 5 11>,<8 11> } 

P10 = { <10>,<7 10>,<8 10> } 

  P9 = { <9> } 

  P8 = { <8>,<1 8>,<2 8>,<3 8>,<7 8>,<8 1>,   

           <8 5>,<7 8 1 >,<7 8 5> } 

  P7 = { <7>,<7 1>,<7 5>,<7 6> } 

  P6 = { <6>,<1 6> } 

  P5 = { <5>,<1 5>,<2 5>,<3 5> } 

  P4 = { <4> } 

  P3 = { <3> } 

  P2 = { <2> }  

  P1 = { <1> } 

 

The complete set of patterns is the union of all the subsets 

of patterns detected above. 

6. Complexity Analysis 

To count the support of an item in a projected database 

requires scanning the entire items in a transaction in each 

sequence. However in a vertical bitmap representation, it 

is relatively having less number of scan and no need of 

projection. 

 

Let C is the number of sequences, S is the average 

number of transactions in a sequence, T is the average 

number of items in a transaction and L is the average 

length of a sequential patterns then for database projection 

method, to detect a pattern with length L requires 

O(LCST) to scan the total items. However in a vertical 

bitmap representation, it requires O(LCS). 

6.1 Performance Evaluation 

Here we examine the performance of the algorithms based 

on support count calculation with two methods: Database 

Projection and Vertical Bitmap Representation. Figure 6 

show the performance of the algorithms with different 

number of sequences (C) under S=5, T=3, L=4. 

 

 

Fig. 6.   Time usage on different number of sequences 

7. Conclusion and Future Work 

For efficient pattern mining, UDDAG data structure is 

used which supports bidirectional pattern growth 

approach. This allows faster pattern mining and efficient 

pruning of invalid candidates. In existing, to derive a 

pattern, database projection method was used. This 

method requires to build many intermediate databases. In 

order to eliminate the time taken to build the projected 

databases, a vertical bitmap representation is used. It 

efficiently stores the database as vertical bitmaps, where 

each bitmap represents an item set in the database. 

Efficiently counting the support of the item set is one of 

the main advantages of the vertical bitmap representation 

of the data and it reduces the scanning time of the item. In 

the future, we expect to form the strong association rules 

from the detected patterns. 
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