
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

1

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Fast Sequential Pattern Mining With UpDown Directed Acyclic

Graph

Iswarya. T1 and Sivakumar. E2

 1,2 Computer Science and Engineering, Sri Venkateswara College of Engineering,

Sriperumbudur, Tamil Nadu, India

Abstract

Sequential Pattern Mining is a technique used to discover

frequent patterns in a sequence database. An UpDown Directed

Acyclic Graph (UDDAG) is a data structure used for sequential

pattern mining which derives patterns based on the bidirectional

pattern growth approach. In existing, to derive a pattern, a

database projection method was used. This method projects the

database according to their prefix and suffix recursively and

makes the database much smaller to further levels. UDDAG

derives length-(k+1) patterns based on the projected databases of

length-k patterns recursively. However this method takes time to

build the database and to find the support count. To overcome

the problem, an approach to represent the item sets in database

as vertical bitmap representation is proposed. It efficiently stores

the database as vertical bitmaps, where each bitmap represents

an item set in the database. Efficiently counting the support of

the item set is one of the main advantages of the vertical bitmap

representation of the data.

Keywords: Sequential Pattern Mining, Database Projection,

Vertical Bitmaps, UDDAG.

1. Introduction

Data Mining is the process which helps to extracting

interesting and hidden information or patterns from large

information repositories such as relational database, data

warehouses, XML repository, etc. Sequential Pattern

Mining is an important problem in data mining.

Sequential Pattern Mining is the process of extracting

certain sequential patterns from the sequence database

whose support exceeds a predefined minimal support

threshold. A minimum support is defined by users

because the number of sequences can be very large, and

users have different interests and requirements to get the

most interesting sequential patterns. By using the

minimum support we can prune out those sequential

patterns, consequently making the mining process more

efficient. Sequential pattern can be widely used in

different areas.

For example, from a sequence database, we can find the

frequent sequential purchasing patterns, for example if a

customer buys the computer typically the same customer

will buy the pen drive within few weeks. 2. Basic

Concepts

Let I = { x1,…,xn } be a set of items. A non-empty subset

of items is referred an item set. The number of items in an

item set is called the length of an item set. A list of item

sets, α = < X1,…,Xl > is called sequence. An item set Xi

(1 ≤ i ≤ l) in a sequence is called a transaction. The

number of transactions in a sequence is called the length

of the sequence. A sequence α = < X1,…,Xn > is called a

subsequence of another sequence β = < Y1,…,Ym > where

(n ≤ m), and β a super-sequence of α, if there exist

integers 1 ≤ i1 <…< in ≤ m such that X1Yi1,…, XnYin . A

sequence database is a set of 2-tuples (sid, α), where sid is

a sequence-id and α is a sequence.

2.1 Sequential Pattern

Sequential Pattern is a sequence of item sets that

frequently occurs in a specific order, all items in the same

item sets are supposed to have the same transaction time.

Consider the database D is sorted, with customer-id as

major key and transaction-time as minor key. Usually all

the transactions of a customer are together viewed as a

sequence, usually called customer-sequence as shown in

Table 1.

Table 1: Customer sequence database

Seq.id Sequence

s1 <(1,2)(4)(3,5)(7)>

s2 <(1,2,3)(3)(5,7)>

s3 <(6)(5,6)(4,7)>

s4 <(4,5)(5,6)(1)(3,5)>

s5 <(4)(5)(2,3)(1,6)>

2.2 Support

A customer supports a sequence s if s is contained in their

corresponding sequences in the sequence database; the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

2

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

support of sequence s is defined as the fraction of

customers who support this sequence which is given in

Eq. (1).

2.3 Problem Definition

Given (i) a set of sequential records (called sequences)

representing a sequence database D; (ii) a minimum

support threshold called min_sup; and (iii) a set of k

unique items or events I = { i1,i2,…,ik }. The problem of

mining sequential patterns is to find the set of all frequent

subsequences S of items I in D which satisfies the given

min_sup.

3. Related Work

The AprioriAll algorithm described by Agrawal and

Srikant [1] that states that “All nonempty subsets of a

frequent item set must also be frequent”. The main

drawback of AprioriAll is that too many passes over the

database is required and too many candidates are

generated.

The GSP algorithm described by Agrawal and Srikant [2]

is an improvement over AprioriAll. To reduce candidates,

GSP only creates a new length-k candidate when there are

two frequent length-(k-1) sequences with the prefix of one

equal to the suffix of the other. In AprioriAll it is easy to

get the support counts of all those candidate sequences but

in GSP it is difficult to get the support counts of candidate

sequences.

The SPIRIT algorithm uses regular expressions as

constraint [4]. It allows the users to specify the regular

expression constraint on the mined patterns. This method

avoids wastage of computing effort for mining patterns

that users are not interested in. Although it needs a

systematic method to push various constraints into the

process.

The PrefixSpan(Prefix-projected Sequential pattern

mining) algorithm presented by Jian Pei [7] representing

the pattern-growth methodology. PrefixSpan mainly

employs the method of database projection and also in

PrefixSpan there is no need for candidate generation only

recursively project the database according to their prefix.

Although the PrefixSpan algorithm successfully

discovered patterns, the cost of memory space might be

high due to the creation and processing of huge number of

projected sub-databases.

SPADE (Sequential Pattern Discovery using Equivalence

classes) algorithm presented by M.J.Jaki [9] is proposed

to find frequent sequences using efficient lattice search

techniques and simple joins. However in SPADE,

candidates are generated and tested on the fly to avoid

storing candidates, which costs a lot to merge the id-lists

of frequent sequences for a large number of candidates.

Another approach called MEMory Indexing for

Sequential Pattern mining (MEMISP) was introduced [6].

MEMISP uses a recursive searching and indexing strategy

to generate all the sequential patterns from the data

sequences stored in memory. MEMISP is more efficient

than GSP and PrefixSpan but slower when pseudo

projection technique is used in PrefixSpan.

By combining SPAM, a new algorithm called LAst

Position INduction Sequential PAttern Mining

(abbreviated as LAPIN-SPAM) has been proposed [10].

When judging whether a sequence is a pattern or not, the

previous techniques use S-Matrix by scanning projected

database (PrefixSpan) or count the number by joining

(SPADE) or ANDing with the candidate item (SPAM). In

contrast, LAPIN-SPAM can easily implement this process

based on the following fact - if an item’s last position is

smaller than the current prefix position, the item cannot

appear behind the current prefix in the same customer

sequence. LAPIN-SPAM could largely reduce the search

space during mining process. But it consumes much more

memory than PrefixSpan.

Although presenting the complete set of sequential

patterns may make the mining result hard to understand

and hard to use. To overcome this problem Jian Pei,

Jiawei Han and Wei Wang [8] have presented the pushing

of various constraints deep into sequential pattern mining

using pattern growth methods. Constraint-based mining

may overcome the difficulties of effectiveness and

efficiency since constraints usually represent user’s

interest, which limits the patterns to be found.

4. Existing System

An UpDown Directed Acyclic Graph (UDDAG) is a data

structure used for sequential pattern mining which derive

patterns based on the bidirectional pattern growth

approach along both ends of detected patterns recursively

[3]. At each level of recursion, the length of detected

patterns grows bidirectionally along its prefix and suffix

of detected patterns. To derive a pattern, a method called

database projection was used. This method makes the

database much smaller to further levels and consequently

make the algorithm more speedy, also there is no need for

candidates generation only recursively project the

database according to their prefix and suffix. UDDAG

derives length-(k+1) patterns based on the projected

databases of length-k patterns recursively.

(1)

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

3

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

4.1 UDDAG

UDDAG efficiently finds and represents the relationship

between patterns. It represents patterns as vertexes and

relationship of patterns as directed edges. Each vertex

represents a pattern with occurrence information, i.e., the

sequence-ids of tuples containing the pattern. By

representing the relationship of patterns from prefix with

a DAG (Up DAG) and the relationship of patterns from

suffix with another DAG (Down DAG), we can decrease

the number of candidates by using these DAGs.

5. Proposed Work

In existing, at each level of pattern mining, a prefix and

suffix projected database needs to be formed, which

consumes more memory if the number of data sequences

increase. Also it takes more time to build the database and

to find the support count of the items.

To overcome the problem of time, a vertical bitmap

representation is proposed. The basic idea is that it

completely eliminates the need of database projection and

finds the patterns from the bitmap representation. The

design of the sequential pattern mining is shown in Fig. 1.

Fig. 1 Design of sequential pattern mining

 Algorithm 1: Sequential Pattern Mining

1 Input: D, sequence database

2 min_sup, minimum support

3 Output: P , set of patterns in D

4 Procedure: pattern(D,min_sup)

5 begin

6 P = Φ

7 FISet = fpgrowth(D,min_sup)

8 D' = transform(D,FISet)

9 B = bitmap(D', id)

10 foreach FI x in FISet do

11 vertex root = new vertex(x)

12 prefixpattern(B,root,x,min_sup,tid1,tid2)

13 suffixpattern(B,root,x,min_sup,tid2,tid1)

14 UDDAG(root)

15 P =P ⋃ root.getAllPatterns()

16 end

17 end

Algorithm 1 first finds the frequent item sets. Then

transform the database and presents the bitmap

representation for the transformed database. For each item

set, a new vertex is created and finds the frequent item

sets in the prefix and the suffix of the item set and then

finds long subsequences by combining prefix and suffix

item sets.

5.1 Frequent Item Sets

It refers to the item set whose number of occurrences

satisfies the minimum support. To detect the frequent item

sets, FP-growth algorithm [5] is used. It comprises of two

steps:

1) First to construct the FP-tree that represents the data

set in the form of a tree. Each transaction is read and then

mapped onto a path in the FP-tree. This is done until all

transactions have been read.

2) Secondly FP-Growth extracts frequent item sets

from the FP-tree in a bottom-up fashion from the leaves

towards the root. Using a divide and conquer approach,

find the frequent item sets ending in a particular suffix.

For e.g., for the database in Table 1, the FIs are: (1), (2),

(3), (4), (5), (6), (7), (1,2), (2,3), (3,5), (5,6).

5.2 Transformation

Based on frequent item sets, we transform each sequence

in a database into an alternative representation. It works

as follows:

Database Transformation: First, we assign a unique id

to each Frequent Item set (FI). We then replace each item

set in each sequence with the ids of all the FIs contained

in the item set. For e.g., (1)-1, (1,2)-2, (2)-3, (2,3)-4, (3)-

5, (3,5)-6, (4)-7,(5)-8, (5,6)-9, (6)-10, (7)-11. We then

replace the database as shown in Table 2.

Table 2: Transformed database

Seq.id Sequence

s1 <(1,2,3)(7)(5,6,8)(11)>

s2 <(1,2,3,4,5)(5)(8,11)>

s3 <(10)(8,9,10)(7,11)>

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

4

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

s4 <(7,8)(8,9,10)(1)(5,6,8)>

s5 <(7)(8)(3,4,5)(1,10)>

Vertical Bitmap Representation: It stores the

transformed database in vertical bitmaps, where each

bitmap represents an item set in the database and a bit in

each bitmap represents whether or not a given customer

has the corresponding item set. If item set i appear in

transaction j, then the bit corresponding to transaction j of

the bitmap for item set i is set to one; otherwise, the bit is

set to zero. For e.g., the vertical bitmap representation for

the transformed database(shown in Table 2) is shown in

Fig. 2.

Fig. 2 Bitmap representation

 Algorithm 2: Patterns in the Prefix

1 Input: B, the bitmap representation of D'

2 root, root vertex

3 x, frequent item set

4 min_sup, minimum support

5 tid1, start transaction id

6 tid2, end transaction id

7 Output: PFISet, set of prefix frequent item set for x

8 Procedure: prefixpattern(B,root,x,min_sup,tid1,tid2)

9 begin
10 foreach sequence s in B do

11 tid1s=upsearch(x,s,tid1s,tid2s)

12 PISets=pprune(B,x,s,tid1s,tid2s)

13 end

14 PFISet=count(PISet,min_sup)

15 foreach FI y in PFISet do

16 vertex ver = new vertex(y,root)

17 root.addUpChild(ver)

18 prefixpattern(B,ver,y,min_sup,tid1,tid2)

19 suffixpattern(B,ver,y,min_sup,tid2,tid1)

20 UDDAG(ver)

21 end

22 end

5.3 Problem Partitioning

Let { x1,x2,…,xt } be the frequent item sets in a database

D, where x1 < x2 <…< xt. D can be divided into t disjoint

subsets. The ith subset (denoted by Pxi ,1 < i < t) is the set

of patterns that contains xi and FIs smaller than xi.

P is the complete set of patterns in D. Px is the set of

patterns with respect to item set x. To detect Px, we first

detect patterns in prefix of x and suffix of x and combine

them to derive Px. This is a recursive process, we perform

the same action until reaching the base case, where there

is no frequent item set is found.

Algorithm 2 and Algorithm 3 are used to find the frequent

item sets in the prefix and the suffix of each item set.

 Algorithm 3: Patterns in the Suffix

1 Input: B, the bitmap representation of D
'

2 root, root vertex

3 x, frequent item set

4 min_sup, minimum support

5 tid2, start transaction id

6 tid1, end transaction id

7 Output: SFISet, set of suffix frequent item set for x

8 Procedure: suffixpattern(B,root,x,min_sup,tid2,tid1)

9 begin
10 foreach sequence s in B do

11 tid2s=downsearch(x,s,tid2s,tid1s)

12 SISets=sprune(B,x,s,tid2s,tid1s)

13 end

14 SFISet=count(SISet,min_sup)

15 foreach FI y in SFISet do

16 vertex ver=new vertex(y,root)

17 root.addDownChild(ver)

18 prefixpattern(B,ver,y,min_sup,tid1,tid2)

19 suffixpattern(B,ver,y,min_sup,tid2,tid1)

20 UDDAG(ver)

21 end

22 end

Searching: First we need to perform Bottom Up Search.

It scan each customer transactions individually along x

from the bottom to find the first existence of item set x in

the transaction and return their corresponding tid. For the

Fig. 2, consider item set 8, in sequence 1-first exists in the

transaction 3, sequence 2-3, sequence 3-2, sequence 4-4,

sequence 5-2. Similarly we need to perform Top Down

Search. It scan each customer transactions individually

along x from the top to find the first existence of item set

x in the transaction and return their corresponding tid. For

the Fig. 2, consider item set 8, in sequence 1-first exists in

the transaction 3, sequence 2-3, sequence 3-2, sequence 4-

1, sequence 5-2.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

5

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Pruning: Algorithm 4 describes the pruning function for

prefix item set. Once searching has been completed,

pruning is done for two cases:

Case 1: With the result of bottom up search, at each

sequence perform bitwise OR operation for the item sets

before the tid to find the item sets that the each customer

bought in their purchase before x then count the support

of each item set (total no.of customers who purchased the

item set before x) from the output of OR operation. Those

item sets satisfies the threshold (min_sup) are considered

as prefix FIs. Then the FIs are projected in DAG.

Case 2: With the result of top down search, at each

sequence perform bitwise OR operation for the item sets

after the tid to find the item sets that the each customer

bought in their purchase after x then count the support of

each item set (total no.of customers who purchased the

item set after x) from the output of OR operation. Those

item sets satisfies the threshold (min_sup) are considered

as suffix FIs. Then the FIs are projected in DAG.

For e.g., item set 8 have 1, 2, 3, 7 as prefix FIs and 1, 5 as

suffix FIs.

 Algorithm 4: Pruning of Prefix Frequent Item Set

1 Input: B, the bitmap representation of D
'

2 root, root vertex

3 s, sequence

4 stid, start transaction id

5 etid, end transaction id

6 Output: ISet, set of item set

7 Procedure: pprune(B,x,s,stid,etid)

8 begin

 9 while x!=0 do

10 ISets[x]=0

11 foreach transaction tidx from stid to etid in

 sequence s do

12 if Bs,tidx ==1 then

13 ISets[x]=1

14 break

15 end

16 else

17 continue

18 end

19 end

20 decrement x

21 end

22 return ISets

23 end

5.4 Pattern Discovery

UDDAG data structure is used represents the relationship

between patterns. To represent the relationship of patterns

from prefix with a DAG, Up DAG is used and the

relationship of patterns from suffix with another DAG,

Down DAG is used. For e.g., item set 8 have 1, 2, 3, 7 as

prefix FIs which are projected using Up DAG and 1, 5 as

suffix FIs which are projected using Down DAG. Fig. 3

shows the Up DAGs for the prefix of item set 8 and Fig. 4

shows the Down DAGs for the suffix of item set 8.

Fig. 3 Up DAGs for item set 8

Fig. 4 Down DAGs for item set 8

After the Up and Down DAGs of x are represented then
should detect Px by evaluating each candidate vertex pair.
It is done by combining each up vertex with each down
vertex and finds the intersection of the occurrence sets. If
the corresponding support satisfies the min sup then it is
considered as a pattern.

For e.g., we detect P8 based on the Up and Down DAGs

of 8 (shown in Fig. 3 and 4). First, we detect the VDVSs

for length-1 pattern in prefix of item set 8, i.e., up

vertexes 1, 2, 3, and 7. For vertex 1, first, we check its

combination with down vertex 1, the intersection of the

occurrence sets is <4>. Thus, the corresponding support is

at most 1, which is not a valid combination. Similarly, up

vertex 1 and down vertex 5 are also invalid combination.

Therefore, VDVS1 = Φ; VDVS2 = Φ; VDVS3 = Φ; VDVS7

= {<1>,<5>}

Since no length-2 pattern exists in prefix, the detection

stops. UDDAG for item set 8 is shown in Fig. 5.

Fig. 5. UDDAG for item set 8

Hence the patterns are

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

6

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

P11 = { <11>,<1 11>,<2 11>,<3 11>,<5 11>,

<1 5 11>,<2 5 11>,<3 5 11>,<8 11> }

P10 = { <10>,<7 10>,<8 10> }

 P9 = { <9> }

 P8 = { <8>,<1 8>,<2 8>,<3 8>,<7 8>,<8 1>,

 <8 5>,<7 8 1 >,<7 8 5> }

 P7 = { <7>,<7 1>,<7 5>,<7 6> }

 P6 = { <6>,<1 6> }

 P5 = { <5>,<1 5>,<2 5>,<3 5> }

 P4 = { <4> }

 P3 = { <3> }

 P2 = { <2> }

 P1 = { <1> }

The complete set of patterns is the union of all the subsets

of patterns detected above.

6. Complexity Analysis

To count the support of an item in a projected database

requires scanning the entire items in a transaction in each

sequence. However in a vertical bitmap representation, it

is relatively having less number of scan and no need of

projection.

Let C is the number of sequences, S is the average

number of transactions in a sequence, T is the average

number of items in a transaction and L is the average

length of a sequential patterns then for database projection

method, to detect a pattern with length L requires

O(LCST) to scan the total items. However in a vertical

bitmap representation, it requires O(LCS).

6.1 Performance Evaluation

Here we examine the performance of the algorithms based

on support count calculation with two methods: Database

Projection and Vertical Bitmap Representation. Figure 6

show the performance of the algorithms with different

number of sequences (C) under S=5, T=3, L=4.

Fig. 6. Time usage on different number of sequences

7. Conclusion and Future Work

For efficient pattern mining, UDDAG data structure is

used which supports bidirectional pattern growth

approach. This allows faster pattern mining and efficient

pruning of invalid candidates. In existing, to derive a

pattern, database projection method was used. This

method requires to build many intermediate databases. In

order to eliminate the time taken to build the projected

databases, a vertical bitmap representation is used. It

efficiently stores the database as vertical bitmaps, where

each bitmap represents an item set in the database.

Efficiently counting the support of the item set is one of

the main advantages of the vertical bitmap representation

of the data and it reduces the scanning time of the item. In

the future, we expect to form the strong association rules

from the detected patterns.

References
[1] R. Agrawal and R. Srikant, “Mining sequential patterns”,

Proc. International Conference on Data Engineering, 1995,

pp. 3-14.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns:

Generalizations and Performance Improvements,” Proc.

International Conference on Extending Database

Technology, 1996, pp. 3-17.

[3] J. Chen, “An UpDown Directed Acyclic Graph Approach

for Sequential Pattern Mining”, Proc. of IEEE Transactions

on Knowledge and Data Engineering, Vol. 22, No.7, 2010,

pp. 913-928.

[4] M. N. Garofalakis, R. Rastogi and K. Shim, “Spirit:

Sequential pattern mining with regular expression

constraints”, Proc. International Conference on Very Large

Data Bases, 1999, pp. 223-234.

[5] G. Grahne and J. Zhu, “Efficiently Using Prefix-Trees in

Mining Frequent Itemsets”, Proc. Workshop Frequent

Itemset Mining Implementations (FIMI ’03), 2003.

[6] M. Y. Lin and S. Y. Lee, ”Fast Discovery of Sequential

Patterns through Memory Indexing and Database

Partitioning,” Proc. Journal of Information Science and

Engineering, vol. 21, 2005, pp. 109-128.

[7] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

7

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Dayal, and M. C. Hsu, ”PrefixSpan: Mining Sequential

Patterns Efficiently by Prefix-Projected Pattern Growth,”

Proc. International Conference on Data Engineering, 2001,

pp. 215-224.

[8] J. Pei, J. Han, W. Wang, “Constraint-based sequential

pattern mining: the pattern growth methods”, Proc. Journal

of intelligent information systems, Vol. 28, No.2, 2007, pp.

133 -160.

[9] M. J. Zaki, ”SPADE: An efficient algorithm for mining

frequent sequences”, Proc. Machine Learning, Vol. 42,

2001, pp. 31-60.

[10] Z. Zhang and M. Kitsuregawa, ”LAPIN-SPAM: An

Improved Algorithm for Mining Sequential Pattern,” Proc.

International Special Workshop Databases for Next

Generation Researchers, 2005, pp. 8-11.

